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Abstract. The Lie algebra gl(n, C) admits a basis which is a generalization of the Pauli 
spin operators, as described by Patera and Zassenhaus. In this paper a new expression for 
the set of generators of the enveloping algebra of gl(n, C) is deduced and new quasi- 
triangular Hopf algebras with solutions lo the quantum Yang-Baxter equation far gl(n, C) 
are derived. Solutions in eight-verten form are also given. Properlies ofthe algebras suggest 
applications to physical theories. 

1. Introduction 

This work relates a new [l] decomposition of the simple Lie algebras A. to Hopf 
algebras and the Yang-Baxter equation [2]. 

The endeavour to understand models in statistical mechanics [3] by means of their 
algebraic structure involves quantum groups. Drinfeld [4] and Jimbo [S] have developed 
a formalism to relate to any simple Lie algebra g a Hopf algebra which is essentially 
their quantum group, giving a solution R to the quantum Yang-Baxter equation in 
the form [2] 

R,,R,,R2,= RzR,,R,2. (1.1) 

Explicit in their constructiox is the Cartan, or root space, decomposition of the Lie 
algebras, and they postulate an expansion for their quantum operator R of the form 

R = I + f i r + ~ ( P )  (1.2) 

where I is the identity and r is the gOg-valued operator corresponding to the classical 
r-matrix [ 6 ] .  An R satisfying (1.2) is called quasiclassical. The fi above is treated 
formally as an indeterminate. 

The work presented here provides a different framework from that of Drinfeld’s 
to investigate solutions to the Yang-Baxter equation (1.1). This framework has a 
number of interesting properties. The Lie algebras are presented in a decomposition 
recently developed by Patera and Zassenhaus [I] .  It is not a root space decomposition; 
instead, the generators are in the form of true Pauli spin operators and certain new 
generalizations to higher rank A,,. The representation space decomposes into dual 
disjoint subspaces appropriate to the particle-antiparticle description. We derive a 
quasi-triangular Hopf algebra based on the Patera-Zassenhaus presentation of the 
algebras A,. Here the resulting R-matrix is not quasi-classical. The Hopf algebras are 
related to the non-standard, or twisted, braid group representations. The first of these 
non-standard representations was derived by Couture and Lee [7,8]. Since then, these 
representations and especially the puzzle of their algebraic structure have received 
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wide attention, see, for example, [9, IO]. The theory developed here incorporates a 
parameter which takes discrete values at the nth roots of unity. Operators in this 
decomposition are also especially suited to eight-vertex models. 

The structure of this paper is as follows. Section 2 summarizes the results of Patera 
and Zassenhaus to introduce their presentation of the Lie algebras A. in terms of 
generalized Pauli generators, and demonstrates our result, crucial to the Hopf algebra 
applications, that a set of two Pauli generators is sufficient to generate the enveloping 
algebra of A,. Section 3 states the Hopf algebra axioms for reference. Section 4 gives 
a Hopf algebra for A, based on the Patera-Zassenhaus decomposition and discusses 
some of its unusual properties. Section 5 gives a Hopf algebra and solution to the 
Yang-Baxter equation for arbitrary A,, shows uniqueness, and discusses limits and 
deformations. Section 6 gives solutions in the eight-vertex form. 

2. The Pauli decomposition 

Patera and Zassenhaus [l] have described the properties of the Lie algebras A. in 
terms of generalized Pauli spin operators. This is not the decomposition represented 
by the Gell-Mann matrices. 

To be specific, consider the algebra A,, whose generators span gl(3. C). The eight 
generators act as follows 

[=  e 2 d 6  

= e2-1/3 

DIP) = 5'1 P) D - ~ P ) =  

Alp) = I P  -2) 

BIP) = 5'1 P - 2) 

A-lp) = I P  +2) 
(2.1) 

B-lp)= Fplp+2)  

clp)=S-plp-2) c - l P ) =  PlP+2) 

The eigenvectors of D are the basis vectors of two disjoint three-dimensional 
representation spaces 

p = 0,2,4 = even integer mod 6 

and 

p = 1 , 3 , 5  =odd integer mod 6. 

These are interpreted as particle and antiparticle representations. Thus, 3 x 3 matrices 
represent the generators. The matrices and the operators they represent have several 
properties analogous to the Pauli matrices, the 2 x 2 spin operators. They never annihi- 
late a state, like the step operators of the Cartan decomposltlon, but they rotate states 
instead. The adjoint action of any two generators X, Y is of the form 

for some integer j ,  for example 
"n*- l - . .n  nun - w Y  

DAD-' = w-'A. (2.3) 

This decomposition allows, furthermore, a finest grading of the algebra. It suffices 
to use two non-commuting generators, A and D are chosen, to express all eight. Each 



A Hopf algebra in Patera-Zassenhaus grading 1973 

generator is labelled uniquely by the eigenvalues a and d of the adjoint action of A 
and 0, 

x = h ~ d ~ a  

D X D - I  = o d ~  (2.4) 

AXA-' = 

Equations (2.4) generalize to all A,. Take A and D to be elements of AN-,, and 
o = e2"'", and define D-' = DZN-', D-"' = (D-I)". From these definitions and 
equations (2.4) of Patera and Zassenhaus [ l ]  we can assert a remarkable result: A and 
D generate the enveloping algebra of gl(N, C). This is in contrast to the case for the 
Cartan decomposition, where all generators of the Lie algebra are needed to generate 
the enveloping algebra and it is crucial for Hopf algebras based on the Patera- 
Zassenhaus decomposition. 

3. Hopf algebra axioms 

Recall the axioms [4,11] which define a Hopf algebra Ah. Let Ah be a unital, associative, 
algebra with multiplication m. It is a Hopf algebra when equipped with the mappings 

A: co-multiplication, a homomorphism; Ah + Ah QAh 

E: co-unit, a homomorphism; Ah + C 

y: antipode, an antihomomorphism Ah +Ah 

which satisfy, for all a, b in Ah 

(idOA)A(a) = (AQid)A(a) 

Define U: permutation mapping Ah63Ah +Ah +Ah @Ah : u ( x 6 3 y )  = y Ox. There 
may be an invertible element R in Ah 63 Ah which satisfies 

u.A(a) = RA(a)R-l. (3.4) 

Take the usual convention: for R =2aiQbi ,  Rhr means that, for (k I, m) any permuta- 
tion of (1,2,3),  the ai act in the kth space, the b, act in the Ith space, and the identity 
in the mth space. If R satisfies 

(id63A)R = R13R,, 

(AOid)R =RI$,, (3.5) 

(yC3id)R = R-' 

then the pair (Ah, R )  is called a quasi-triangular Hopf algebra. This is sufficient for 
R to satisfy the Yang-Baxter equation (1.1). 
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4. Hopf algebra associated with the Pauli operators of gl(3, C) 

Consider the enveloping algebra A of A, generated by A and D. One may show that 
A itself is a quasi-triangular Hopf algebra under its multiplication m and the CO- 

multiplication 

A A = D O A + A @ l  

A D = D @ D .  (4.1) 

For any element a in A equation (3.1) holds, so the co-multiplication (4.1) is CO- 

associative. The co-unit satisfying (3.3) is given by 

E (  I)  = E ( D )  = 1 

E(A)=O. (4.2) 

The antipode satisfying (3.2) is 

y ( D )  = D-' 

y ( ~ )  = -D-IA.  (4.3) 

So A is demonstrated to be a Hopf algebra under the co-multiplication given in (4.1). 
This result is independent of representation. 

Define the elements ei of the enveloping algebra with the projection property 

e, = (I + D + D2)/3 

e<= (I + w D t  w2D2)/3. 

e h )  = % I P )  
e2= ( I+ w2D+wD2)/3 

(4.4) 

Since A and E are homomorphisms, it follows that 

he, = e,@ e,+ e,@ e,+ e,@ e, 

he, = e,@ e, + e,@ e,, + e,@ e, 

Ae., = e,@ e4 + e, 0 e, + e,@ e, 

E (  ei) = &,. 

r ( e J  = eo 

v(e2) = e4 (4.6) 

y ( e J = e , .  

R = I O  e,+ D2@ e, + DO e+ 

R-' = I@ e,+ DO e,+ D 2 0  e, 

( i d @ y ) R = ( y O i d ) R = R - ' .  (4.9) 

(4.5) 

Since y is an antihomomorphism it follows that 

An invertible element R which satisfies (3.4) and (3.5) is 

(4.7) 

(4.8) 

with 

where 

Thus undeq the mappings (4.1), (4.4) and (4.5), (A, R) is a quasi-triangular Hopf 
algebra and R is a solution to the Yang-Baxter equation (1.1). 
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Several properties are of note here. Perhaps most striking mathematically is the 
form (4.1) of the co-multiplication. In the Drinfeld quantum groups the co-multiplica- 
tion is co-commutative before the deformation parameter is introduced. The D in the 
expression for AA means that, although no deformation parameter has been introduced, 
the co-multiplication (4.1) is non-co-commutative. This distinguishes our Hopf algebra 
from that of Drinfeld and Jimbo. It causes phase shifts in the R matrix, which is 
diagonal in the basis space p = 0, 2, 4, as follows 

(4.10) 

By contrast, for the standard R-matrix, as fi - r O ,  R + I; all matrix elements equal one 
on  the diagonal. 

The D in the co-multiplication for A also implies that the co-unit for any power 
of 
quantum groups. This is similar to the multiple mapping properties of a quotient 
algebra, such as the Clifford algebra which describes intrinsic spin. 

The expressions (4.1) for the co-multiplication preserve the Pauli grading by A, 
giving a weight conservation. In the sense that the operator A rotates states the 
co-product conserves these internal rotations. Preservation of the A grading in physical 
applications can imply selection rules. The antipode corresponds to the opposite 
rotation. As seen from the projection form (4.6): the state zero is its own image under 
the antipode and states two and four result from rotations in opposite directions from 
state zero. From (5.4), D to any power times its antipode is unity. So when D" operates 
on any state 12k), that state is multiplied by w X m ,  and when y ( D " )  operates, the phase 
factor corresponds to the opposite rotation in the complex plane. The antipode of A 

generate related infinitessimal rotations in the Lie group generated by the algebra. 

(0,O) (0 ,2 )  (2,O) (0 ,4)  ( 2 , 2 )  (4,O) (2 ,4)  (4,2) (4 ,4)  
1 1 1 1 0 2 . 1  w w w 2 '  

muj; be oiie io saiisfy properTy- (2,3), in  cOnitdsi io & ( j j ) = G  for standard 

is -.A times a phase depending on thP sta!e p it opera!es on, so thZ! .A End i!S an!ipode 

5. Generalization to A. 

The structures given for A, generalize to A,. Taking A and D as generators of A., or, 
equivalently, of gl(N, C ) ,  N = n + 1, the commutation rules are (2.3) and the co- 
multiplication is (4.1). The co-unit and antipode of A and D are just as given by (4.2) 
and (4.3). These expressions in the Hopf algebra are indepenent of representation. 
They depend on n only through the definition of W .  

Define the projectors 

eZm = 1 w N-im W'/ N (5.1) 

with the projection property as in (4.4). When acting on a state 12m), each term gives 
one, when acting on any other, they sum to zero. All sums are from 0 to n. Using the 
convention e2N = e,, it follows that 

Ae2, =I e 2 j O e 2 , - 2 j  

& j e , j = & , .  

The antipode satisfying (3.2) is 

y ( D " )  = D-" 

y ( e 2 , ) = e 2 N - z , .  (5.4) 
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An invertible element R which satisfies (3.4) and (3.5) is 

R=EDN-"Oe, , .  ( 5 . 5 )  

The R-matrix is diagonal with elements given by 

R(2k, 21; 2s 21) = w-". (5.6) 

Its inverse is 

R"=ZD"Oe, ,  (5.7) 

which satisfies both relations in  (4.9). It is also represented by a diagonal matrix, and 
its elements are the inverse, and also the complex conjugate, of the elements of the 
R-matrix in (5.6). 

The expression for R is unique to within an overall constant, given the rules for 

quasi-triangular under the CO-multiplication (4.3). To see this, note that R must be 
expandable in terms of the form D'OD' or, equivalently, of the form DP'"'Oe,,. 
The coefficients and the value of p may be determined to give (5.5) by using the 
commutation rules and 

co"u!a!ion (23) and requiring !hat R he diagona! in S!B!PS i!?, !), k znd ! L'VCR, 2nd 

Ae,, - e,,,_,A = 0. (5.8) 

The solution ( 5 . 5 )  for A, is the same as one of the non-standard braid group 
representations [7,8] in the undeformed limit. The limit as h + 0 of the N = 2 rep- 
resentation gives (upon the usual transposition) a diagonal R-matrix with elements 

1, 1, 1 , m  for w = exp(2vi/2) = -1. (5.9) 

Our equation (5.5) implies the same R-matrix. 
In our derivations we have not introduced a deformation parameter h. However, 

we wish to argue that the algebra of section 5 is, in some sense, deformed; and that 
o, which is given for any gl(N) by [l]  o = e x p ( 2 v i / N ) ,  may be regarded as a 
deformation parameter. As is well known, R-matrices from quantum groups may be 
interpreted as scattering matrices. The Drinfeld-Jimbo limit R = I as h + 0 means that 
in the scattering, states are unchanged. A scattering interpretation of (4.9) is quite 
different. The phase shift is some w"', depending on the initial state. As N + m, w + 1,  
and the eigenvalues of D, as least in the neighbourhood of some state Ip) ,  approach 
a constant value. Choosing the axes appropriately, p =0, D+  1.  The co-product then 
becomes co-commutative locally, as it should be for an undeformed quantum group. 
Locally the large R-matrix also approaches a constant, as required for a quasi-classical 
R-matrix. 

That the braiding matrix associated with algebras in the Patera-Zassenhaus grading 
has a parameter which takes values of the roots of unity suggests relevance to conformal 
field theory. See also [ I 2 1  and [13]. After completing this work, [15] and [ I61  came 
to our attention. 

6. Eight-vertex models 

The Patera-Zassenhaus decomposition is especially applicable for models where 
weights are conserved modulo,two, as in the eight-vertex model [3]. This is because 
the operator A changes the weight p by two units, and m by one. Setting the operator 
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B = iAD as the third Pauli operator for sl(2), with A j  arbitrary, the following are 
solutions to the Yang-Baxter equation (1.1): 

R, =A,AOA+ A3BOB 

R, = A 3 B 0  B f A,DO D 

R, = AID@ D f A,AO A. 

This may be verified by substituting directly into (1.1) and using the commutation 
relations for Pauli matrices. 

The Sklyanin algebra [ 141 is expressed in Pauli operators equivalent to A, E, and 
D, but solutions (6.1) are not equivalent to the eight-vertex solution by R J Baxter 
which appears in that algebra. 
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